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We solve analytically for the perimeter-area generating functions for two  

models of vesicles. While from the solution of the first model, staircase polygons, 
one can easily extract the asymptotic scaling behavior, the exact solution of 
the second, column-convex polygons, is difficult to analyze. This leads us to 
apply a recently developed method for deriving the scaling behavior indirectly, 
utilizing a set of nonlinear differential equations. One result of this work is a 
nontfivial confirmation of the scaling/universality hypothesis. 

KEY W O R D S :  Exact solution; scaling; vesicles; column-convex polygons; 
staircase polygons. 

1. I N T R O D U C T I O N  

Whenever a new model is introduced which undergoes a continuous phase 
transition it is always desirable to calculate the critical exponents exactly. 
In the past few year there have been several exact solutions given for 
partially directed models of vesicles, ( ~ )  w a l k s ,  (5"6) and interfaces (7's) on 
the square lattice. The solutions for the full area-perimeter generating 
functions for the vesicle models have been written down in terms of 
q-hypergeometric functions. While these works provide the "exact" solu- 
tion, the asymptotics of these functions have been elusive and hence the 
critical behavior has not been extracted. Work on partially directed inter- 
a c t i n g  w a l k s  (6) has provided two distinct approaches to this problem. The 
first is to consider the partially directed object in the limit when one lattice 
direction has been made continuous. This has proved fruitful (6"9) since the 
generating functions can usually now be written in terms of Bessel func- 
tions. Furthermore, the "semicontinuous" model's solution can be obtained 
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by taking the continuum limit of the discrete model's solution. The second 
approach, through a formal perturbation expansion, is able to give several 
critical exponents. In a new development ~t~ the continuum limit has been 
applied to a different representation of the generating function to obtain 
nonlinear differential equations from which the scaling behavior of the 
generating function can be derived. 

In this paper we shall demonstrate the power of these three methods 
by examining the scaling behavior of two vesicle models whose scaling 
behavior has not been previously discussed. These models are staircase 
polygons and column-convex polygons. Both these models have been 
solved for their generating functions. We shall first exactly solve the semi- 
continuous partners "of these models. For staircase polygons, where the 
solution is in terms of Bessel functions (oFl hypergeometric functions) 
again, the scaling behavior can be extracted with ease. In the second, the 
solution is in terms of functions proportional to oF3 hypergeometric func- 
tions. Moreover, the solution is no longer a simple ratio of hypergeometric 
functions, but rather has such a complicated structure that further analysis 
is prohibitively complex. The continuum limit method tt~ is then applied to 
both lattice models. All the results of this method agree with those found 
from the semicontinuous solution. Further, the result gives us the full 
scaling solution of the column-convex polygon model. The method of solu- 
tion, when applied to column-convex polygons, is complex and requires the 
use of computer algebraic manipulation. 

The two models, staircase and column-convex polygons, are believed 
to be in the same universality class. Our work not only confirms that the 
critical exponents are identical for these models, but also that the scaling 
functions are the same (though with different, nonuniversal, amplitudes). 
This provides an example of the scaling/universality hypothesis being 
upheld in a situation where exact solutions are available. Another bonus of 
our work is that the solution of the scaling" behavior of column-convex 
polygons sheds light on the mathematical approximations made in the 
studyttt 13) of the bubble model of low-temperature correlations in Ising 
systems (previous work had "approximated" column-convex polygons by 
bar-graph polygons). 

Column-convex polygons are self-avoiding polygons on the square 
lattice with the additional constraint that any vertical line on the dual 
lattice only intersects two edges of the polygon (and hence is partially 
convex). A typical column-convex polygon is shown in Fig. 1. This model 
was introduced by Temperley, ~t4) who called it model Q and it has also 
been referred to as row-convex polygons by others, tt'21 Another, simpler 
model of vesicles is staircase polygons. These are self-avoiding polygons on 
the square lattice with the additional constraint that the upper and lower 
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Fig. 1. Typical configurations for (a) staircase polygons, (b) bar-graph polygons, and 
(c) column-convex polygons. 

bounding walks can only step in a north or east direction. The upper and 
lower walks start at the bottom lefmost corner and end at the upper 
rightmost corner. Staircase polygons are fully convex. A typical staircase 
polygon is shown in Fig. 1. 

Mathematically, all the models require the calculation of the same 
object, the generalized partition function G(y,  z), where 

G(y,z)= ~ A,,,(y)z"'= ~ P,,(z)y" 
~ l =  l n ~ 4  

(1.1) 

with 

c , , y  and P,(z) = c, ,z  " " (1.2) 
n = 4  n l = l  

and c~, is the number of configurations with perimeter n and area m. The 
perimeter n has an associated perimeter fugacity y, and the area m an 
associated area fugacity z. Physically it is of interest to understand the 
behavior of the partition function Am(y)  of vesicles of fixed area m as the 
perimeter fugacity y is varied and the partition function P,,(z) of vesicles of 
fixed perimeter n as the area fugacity z is varied. The behavior of the parti- 
tion functions for large vesicles is determined by the mathematical behavior 
of the generating function near its radius of convergence. Hence, it is of 
interest to study the generating function and especially study it near its 
radius of convergence. This is the aim of our work for the models of stair- 
case and column-convex polygons. 

Let yc(z) be the radius of convergence of the generating function 
G(y, z) for fixed z: 

yc(z)=  lim P,,(z) -l /" (1.3) 
n ~ o T ~  
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For vesicles this is related to the free energy per unit length of vesicles 
of fixed perimeter in the limit of large perimeters through the relation 
yc(z) = exp[flf(z)] ,  where 

- f l f ( z ) =  lim l log [P , , ( z ) ]  (1.4) 

Vesicles of fixed perimeter in solution are believed to undergo a phase 
transition as the osmotic pressure (area fugacity) is varied. The schematic 
shape of the radius of convergence yc(z) has been determined by Fisher 
et al. ~5~ and is shown in Fig. 2. The partially directed models considered in 
this paper have the same shaped radius-of-convergence curve. The free 
energy has a singularity at the "tricritical" point ( z = z , =  1, y = y , ) .  In the 
neighborhood of this point, below the line yc(z), the singular part of 
the generalized partition function is expected to have the asymptotic, or 
scaling, form ~ls' 161 

Gsi,g(y, z) ~ (1 - z ) - r '  f (  (y,  - y)(1 - z ) - ~ )  (1.5) 

with 

f (x) . .~ as x ~ 0  + (1.6) 

where r is the tricritical crossover exponent and ?u = y,Ab. Note that some- 
times the exponent notation c t - 2 ,  which arises from the mapping of 
polygons to the free energy of some magnetic model, is used in place of the 
),'s used above. 

f~ 

> 

i 
)•ritical Point 

(l,Yt) 

z - area variable 1 

Fig. 2. Schematic plot of the radius of convergence of the generating function showing the 
tricritical point. 
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One may also consider the function zc(y), which is the radius of 
convergence of the generating function at fixed y. For y ~<y, it is expected 
that zc(y)=  1. [For  y > y ,  the function zc(y) is simply the inverse of the 
function y,.(z).] The shape of the line zc(y) has the associated exponent ~b, 

z c ( y ) - - z , ~ ( y - - y , )  q' (1.7) 

which can be related simply to ~b given the tricritical structure as 
= 1/~b. (16) Also, at fixed y < y ,  it is expected that the generating function 

has a droplet or condensation-like singularity. ~5~ 
In this paper we shall be investigating the behavior of the generating 

functions especially near the tricritical point (z, y ) =  (1, y,). More precisely, 
we obtain the scaling form, as in (1.5) above, of the generating function for 
each model. For each of the models considered the generating function has 
a simple pole for y > y ,  on approaching zc(y) and the required droplet 
singularity for y <y , .  

It will be essential for solving the models to split the perimeter fugacity 
into two components, x and y, where y is the fugacity for the vertical 
perimeter bonds and x that for the horizontal perimeter bonds. In fact, for 
all these partially directed polygon models the "natural" variables are x, y, 
and z. Thus the object we calculate is 

G(x , y ,  z)=~ ~ cC'.,"'"2'x"'y"2z " (1.8) 
m n I , n 2 

where c~ ' ' '~  is the number of polygons with nl horizontal perimeter 
bonds, n2 vertical perimeter bonds, and area m. It will also be convenient 
to use the variables ~ and e, where 

y = e x p ( - r ) ,  z = e x p ( - e )  (1.9) 

Before describing our work we briefly reiterate the previous contribu- 
tions to these problems. The staircase polygons' area-perimeter generating 
function was obtained by Polya, ~17) but he appears not to have published 
the proof. The perimeter-only generating function was first published by 
Gouyou-Beauchamps et aL ~18~ Other generating functions have also been 
found, t19) The column-convex polygon perimeter generating function was 
found by Delest tt-9~ using algebraic languages and independently by Brak 
and Guttmann t2~ using the Temperley method. The area-perimeter gener- 
ating function was found by Brak and Guttmann c1~ with a more compact 
form of the solution recently given by Bousquet-Mrlou. t2~ Various other 
generating functions have also been boundJ 21-231 
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Each of the above polygon models has a semicontinuous partner 
obtained by taking the continuum limit. The heights of the columns of 
the above polygons are all constrained to take on positive integer values. 
However, we can define an associated model where the heights of the 
columns are allowed to take on positive real values. These are then the 
semicontinuous staircase and semicontinuous column-convex polygon 
models. The continuum limit corresponds to allowing the lattice spacing in 
the vertical direction to tend to zero but keeping the physical height of the 
columns fixed. We investigate these models using the method introduced by 
Temperley (14J and utilized (l' 2j in the solution of the fully discrete models. 
In the staircase problem this method allows the extraction of all the infor- 
mation required. In the column-convex case it gives us the full solution and 
some exponents. While in theory it might be possible to do the required 
asymptotics, and hence obtain the scaling function, we have found that this 
is not practical. 

It will be shown that the discrete column-convex polygon generating 
function satisfies a set of nonlinear functional equations. One approach we 
use is to assume that a scaling function exists and, substituting a formal 
perturbation expansion into the functional equations, extract the exponents 
around the tricritical point. This has been done for the discrete column- 
convex model. However, a more rigorous approach is the following: We 
take the continuum limit of the functional equations, which become a set 
of coupled nonlinear differential equations. Using dominant balance ideas 
on the equivalent single nonlinear differential equation and matching the 
solution with the known solution at z =  1, we extract the full scaling 
behavior of the semicontinuous model. The exponents obtained are in 
agreement with those obtained formally from the perturbation expansion in 
the discrete model. 

Our major results for the scaling near the tricritical point can be 
summarized in the following equations. The generating function for stair- 
case polygons can be written for y ~ y, and z ~ 1 as 

(~r(X, T, e )  ~ "r + 21/3v -1/3 Ai'(2 -2/3V2/3(1 - -  G~-)) r (I.10) 
Ai(2 -2/3V2/3(1 -- 0"2)) 

where 

x 2r 
a r  = -  and v = - -  (1.11) 

The value of y, is defined via t r r =  1. The full solution for staircase 
polygons is given in Eq. (2.13) with the bonus of the asymptotic solution 
for all fixed y <~ yc(z)  with z ~ 1 also given in Section 2. The above scaling 
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Table I. Exponents for Both the Part ial ly Convex 
Vesicle Models, Staircase and Column-Convex 

Polygons, at the "Tricrit ical" Point 

E x p o n e n t  ~,,, ),, ~ ~b 

Va lue  - 1/2 - 1/3 2/3 3/2 

form leads to the exponents given in Table I. For column-convex polygons, 
again for y ~ y ,  and z.~ 1, we have 

2: 
fc(X, r, e ) ~  (5 - 2 x/~) r + T~5 (19 + 6 x//2) v 

where 

1/3 Ai'(2 - 1v2/3(1 - O ' c )  ) 

Ai(2-1v2/3(1 - O-2)) z 

(1.12) 

2x 2r 
O-c = -  and v = - -  (1.13) 

T 

The value of y, is defined via a c =  1. The exponents for column-convex 
polygons are also given in Table I and are the same as those for staircase 
polygons. 

Abraham and collaborators have utilized and extended ~24' 71 the math- 
ematics of bar-graph polygons (see Fig. 1) in several contexts/I1 ~3) One 
context has been in modeling the wetting transition, ~'-4' 7) while another has 
been in a low-temperature approximate theory of correlations in uniaxial 
ferromagnets.t~J 13) In this second application the two-point spin-spin 
correlation function is written as a sum over solid-on-solid loops enclosing 
the two points. As originally formulated, the configurations considered are 
column-convex polygons. In an effort to produce a tractable problem 
Abraham t~l~ made an approximation to "center-of-mass" and relative coor- 
dinates. In this way he modified the mathematics so that the configurations 
considered were bar-graph polygons. More recently, Abraham and Upton 
reconsidered this bubble model t~2' ~3)in the context of the singularities in 
the susceptibility at the low-temperature first-order transition in Ising-like 
systems. Using the fact that the susceptibility is the sum over two-point 
correlations, they gave an expression for the susceptibility of the Ising 
system as a function of the field, surface tension, and magnetisation. This 
function was essehtially the generating function of semicontinuous bar- 
graph polygons fiB(x, z, e), which is given as 

2 J,.(O-Bv) 
1 + fB(x, z, e ) =  (1.14) 

O- B J , ._  I( a BV ) 
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where 

v = - -  and a n =  (1.15) 

Hence, it is interesting from several points of view to examine the original 
configurational states, which are column-convex polygons. Our major 
conclusion here is that, while the scaling behavior is of the same form in 
column-convex and bar-graph polygons, the nonuniversal amplitudes are 
different. 

The layout of the paper is as follows. In Sections 2 and 3 we provide 
the solutions of the semicontinuous variants of staircase and column- 
convex polygons. In Section 4 the set of functional equations is derived for 
the discrete column-convex model and in Section 5 the exponents are found 
using the formal perturbation expansion. In Section 6 the semicontinuous 
limit of the functional equations is taken to give a nonlinear differential 
equation for the generating function of the column-convex model. In 
Section 7 this differential equation is solved in the scaling limit. 

2. STAIRCASE POLYGONS 

In this section we give the exact solution for the generating function 
of the semicontinuous analog of staircase polygons and as a consequence 
show that the scaling behavior extracted by the other methods of this paper 
gives the correct results. ~1~ The model is illustrated in Fig. la and we 
associate a fugacity x with horizontal steps, a fugacity y = e -~ with vertical 
steps, and a fugacity z = e - "  with unit areas. 

We solve for the generating function by adapting the Temperley 
method 1~4'1) to the continuous version of the problem. The generating 
function can be written as an integral over all polygons that have a fixed 
height of their leftmost column (see Fig. 3): 

qgr(x, ~, ~) = T(r) dr (2.1) 

The major ingredient in the method of Temperley is to find a recurrence 
relation for T(r), in this case an integral equation, and then solve for that 
generating function. Note that T(r) depends also on ~, e, and x. In the 
continuous case this procedure leads to a differential equation. This dif- 
ferential equation is one in the variable r rather than in one of the model 
parameters. 
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Fig. 3. The Temperley method for obtaining a recurrence relation for the generating function 
of a partially directed polygon problem. The idea is to consider that each polygon with left- 
most column of height r can be constructed from all polygons of leftmost height s by adding 
a column of height r. 

Considering 
polygon with leftmost column of height s, as in Fig. 3, gives us 

fj T(r)= x~z'y2" + x2z" ds T(s) f ( r ,  s) (2.2) 

where 

f ( r , s ) = ( 2 z )  -1 e x p ( - 2 z r ) { e x p [ z ( r + s ) - - z  I r - s l ] - 1 }  (2.3) 

It is more convenient to work with the function g(r) defined as 

g(r) = e"e~rT(r) (2.4) 

By differentiating the above integral equation, we obtain the differential 
equation 

_~2g = (r2 _ xZe-~r) g(r) (2.5) 

Making the substitutions z = ae -~r/2 and h(z)=g(r) ,  we obtain 

2 d2h dh [ 4x 2 2 _ 4~2"~ h(z) -- 0 (2.6) 
z 

the addition of a column of height r to a staircase 
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This is Bessel's differential equation with 

2T 
v = - -  (2.7) 

E 

and 

2 x  
a =  - -  (2.8) 

s 

The solution is given by 

h(z)  = C I Jr(z)  + C2J_v ( z )  (2.9) 

with Ci being constants that depend on the boundary  conditions implicit 
in the integral equation. One can show (analogously to ref. 6) that C2 = 0 
and hence we can solve the boundary  condition 

g(O)=x-" (2.10) 

to obtain 

g(r) = x 2 J,_~/~,((2x/e) e -~'/z) 
. ( 2 . 1 1 )  

J2~/~.(2x/e) 

The boundary  condition for g'(r)  can be written as 

f~r = x -2g ' (0 )  + r (2.12) 

and leads to 

~ r ( x , v , e ) = v  1 -ff--j,,(~v)) (2.13) 

with 

x 2t  
and a = -  v = - -  /z.14) 

T 8 

For  the sake of completeness we give the solution with _=~ 1: 

~T(x, t, 0 ) =  t - (t-" - x 2 )  'n  (2.15) 

Now the area fugacity occurs only in v, while the horizontal fugacity 
comes into play only through a. Considering the behavior of the Bessel 
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functions, it can be seen that  at fixed perimeter fugacities such that 0. ~< 1 
the generating function has singular behavior  in the variable v as the 
area fugacity z approaches  1 from below. For  a > 1 there is a pole in the 
generating function at some finite value of v,.(a) given by the solution of 

Jv,.(0.v,.)=O (2.16) 

This behavior  gives us the d iagram in Fig. 2. 
The change in behavior  as a function of perimeter fugacity occurs at 

0.(x ,y)= 1 (2.17) 

or, if x = y ,  then y ~ 0 . 5 6 7 1 4  at this point. 
For  large v the Bessei functions can be asymptotical ly approximated  

by Airy functions and the generating function can be seen to behave as 

( ~ . ~ )  1/2 I/3 Ai'(v2/3() 
(r r, e) ~ z + v-  Ai(v2/3( ) r (2.18) 

where for 0. < 1 

2 (3/2 = l o g  1 + (1 _0.2)J/2 
- (1 _0.2)t/2 (2.19) 
3 0. 

This asymptot ic  expansion is uniform in 0.. This allows the extraction of the 
critical exponents  for the transition that occurs at (0., I / v ) - - (1 ,  0). Near  
this point the variable ( can be approximated  by 

1 - - 0  .2 
~ 22/3 (2.20) 

Again for the sake of completeness,  when a = 1 the generating function is 
given by 

(gr(r, ~, e) z_61/3 F(2/3) -1/3 ~ zv (2.21) 
F(1/3) 

Hence, the exponents at the critical point are y,, -- - 1/2, 7, -- - 1/3, ~b -- 2/3, 
and ~O = 3/2. 

This asymptot ic  behavior  (2.18) is exactly the same as that extracted 
from the differential equation/scaling solution method,  tmJ 

3. C O L U M N - C O N V E X  POLYGONS 

We present the solution of the generating function of the semicon- 
tinuous version of the vesicle model  of column-convex polygons (also 
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known as row-convex polygons) in this section. The solution is given in 
terms of hypergeometric functions oF3 and the asymptotic analysis of the 
solution would be a demanding task. This observation leads us to utilize 
the differential equation scaling solution to extract the exponents analyti- 
cally in Sections 6 and 7. The model is illustrated in Fig. lc and we 
associate a fugacity x with horizontal steps, a fugacity y = e-~ with vertical 
steps, and a fugacity z = e - '  with unit areas. 

We solve for the generating function by adapting the Temperley 
method~4. 1~ as in the previous section. The generating function can be 
written as an integral over all polygons that have a fixed height of their 
leftmost column (see Fig. 3): 

;? ffc(X, Z, e)= C(r) dr (3.1) 

Considering the addition of a column of height r to a column-convex 
polygon with leftmost column of height s, as in Fig. 3, gives us 

f: C(r) =x2z~y'-r + x2z r ds C(s)f(r, s) (3.2) 

where 

f(r, s) = r - I  e x p ( - 2 r r ) { e x p [ z ( r  + s) - r I r -  sl ] - 1 } 

+ Ir-sl  e x p [ - 2 r ( r -  s) O(r-s ) ]  (3.3) 

The function O(-) is the Heaviside step function. 
It is more convenient to work with the function g(r) defined (to avoid 

symbolic overload, we use similar symbols in this section to that of the 
previous redefined for the purposes of this section) as 

g(r)=el~ +~lrC(r) (3.4) 

By differentiating the above integral equation, we can obtain the differen- 
tial equation 

dag 2~2d2g +(r4--4T2x2e-~r)g(r)=O (3.5) 
dr' 

The boundary conditions from the integral equation are 

g(O) = x2(1 + )ffc) (3.6) 

and 

g'(O) + rg(O) = x2(ffc + 2ro,~rc) (3.7) 
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where 

JUt(x, r, e)= rC(r) dr (3.8) 

Making the substitutions z = ae -`r/2 and h(z)=g(r), we obtain 

24 d4h 3 d3h d2h dh 
~ z  4 + 6 z  d--~3 + 7z2 ~zZ + z ~z z 

=--~- t  z dz'S -k-z q-I, e4a2 z- F , ] h ( z ) = 0  (3.9) 

This cannot be transformed into Bessel's differential equation, and so one 
must try a new series solution with 

ho(z)=z v ~ h,,,z" (3.10) 
m ~ O  

This indeed succeeds with the result that the function A,.(z) defined as 

(Z/4)Zm+v (3.11) 
A,,(z) = I-m w F(m + v + 1 )]2 

m = 0 

with 

2T 
v = - -  (3.12) 

and 

8~x 
a =  e--- 5- (3.13) 

is a solution. If we write a = av 2, then 

2x 
tr = - -  (3.14) 

T 

We notice immediately that the function a(x, y) is different in the column- 
convex case than in the staircase model. The function A,. is a hyper- 
geometric function: 

zv ( (4)2) Av(z)=  [ F ( v +  1)] 2 ~ V+ 1, V+ 1, 1; (3.15) 
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This gives us two independent solutions with A,. and A .... However, 
as we have a fourth-order differential equation, four independent solution 
are required. These are found from the ansatz 

~- (z/4)2,,, + ,. 
h , ( z ) = ( l o g z ) A , . ( z ) +  ,=Z u , , , l - m ! F - ~ + v + l ) ] 2  (3.16) 

#t = 0  

by solving for u,,, by substituting into the differential equation. The Um are 
given by 

u , , , = -  Y" (3.17) 

This gives us two further solutions (the second has v---, - v )  as 

(log z) A,.(z) + By(z) (3.18) 
with 

~, [ " (1 ~ + v ) ]  (z/4)2"'+" 
B , . ( z ) = -  ~= ~ +  [ m V F ( m + v + l ) ]  z (3.19) 

m = 0 k 1 

As with the staircase problem, one can dismiss the - v  solutions 
immediately. However, in this case that still leaves us with two independent 
solutions. The full solution is then given by 

h(z ) = CI A,.(z ) + C2[(log z) A,.(z) + B,.(z) ] (3.20) 

with Cj being the constants that depend on the boundary condition implicit 
in the integral equation. 

It is now possible to use the boundary conditions (3.6), (3.7) with the 
definition (3.8) to find the constants C~ and C2and hence the generating 
function ~c.(x, r, ~). To write down the solution, we first define several 
functions related to A,. and B,.. Let 

1 
a,,,= [m! F(m + v + 1)] 2 (3.21) 

and b., = u.,a,,,. Then we define 

~.  f -14 ~ 2,,, + ,, 
Ai/l(z) = a,,,,_,_ , 

.... o [ 2 - ~ + v + l ) ]  j (3.22) 

and 
2 m  + v 

(/I _ (3.23) 
_ ~ b,,,(zl4) 

m = 0 
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The constants Ck are, subsequentially, 

and 

C~ = 

Rl(o,  v) C, (3.24) 
C ,  - R 2 ( ~ ,  v--------) - 

x2R2(ff, v) 
(3.25) 

with 

R,(a,  v)[Av(av 2) -- (a2v2/4) Al,,21(av2)] + R2(a, v) R4(a, v) 

and 

0.2y 3 
RI(O" , v)=- ---~ {(log av 2) A~,,z'(av 2) + B~,.2'(av 2) - 2A ~,.3'(o-v2)] 

0-2V 2 
+ T  [(log ov 2) A~,,"(,~v 2) - A~,?'(ov ~) + B7 ~(,~v-~)] 

+ [Av(av z) + av2(log av 2) A',.(av 2) + avZB',.(avZ)] 

- v [(log av 2) A ,.(av 2 ) + B,.(avZ)] (3.26) 

O-2y 2 O-2y 3 
R2(a, v) = vA ,.(av 2) - av2A',.(av 2) - T A ~,.' '(av 2) - --f-- A I,.2)(av2) 

(3.27) 

R3(a , v) = [(log av 2) A ~,.~ ~(av 2) - A r + B~,. ~ )(av'-)] (3.28) 

I 2 0"2y2 1 R4(a, v) = (log 0"V 2) A:,(av )--  T A(,.2)(o-v 2 ) 

[ ] O'-Y- . -~ a 2v2 B~?_,(~v ~) + - - ~ - A ~ d ( a v  -) + /L.(crv2)- T 

where A'(B')  refers to the derivative of A(B) with respect to z. 
The generating function is, finally, given as 

2x 2 Rl (a ,  v) Bv(o'v 2) 4- R2(a, v) R3(a , v) 

(3.29) 

~c(x, r, ~)= 
R,(a,  v)E A,.(av 2) - (a2v2/4) AI,.21(av2) ] + R2(a, v) R4(o, v) 

(3.30) 

If ~ = 0, this simplifies to 

2rX3[X(2  + --  2 _ ) -- 2(2+ + z)(2 _ + r ) ]  
~c(x, r, 0)= (2+  - -~ ._ ) [X4- t -X2( )~+  -k-J._ q -2" t ' ) 2 - - (2+  q-T) 2 ( 2 _  + ' r )  2] 

(3.31) 

822/76/5-6-2 
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with 

2_+ = (~2 + 2x~)1/2 

and expanding around a = 1, with s = 0, we have 

( r a )  ( 1 0 - 4  v/2)  (76 + 24 ,v/'-2) .r(1 _ a),/z 

(3.32) 

(3.33) 

The critical point is given by a = 1, although we reiterate that this translates 
to a different relationship between the fugacities, compared to staircase 
polygons, as 

= 2x (3.34) 

The perimeter generating function has the same type of singularity as in the 
staircase problem with a square root behavior (7, = - 1/2) on approaching 
a = l  w i t he = 0 .  

Because of the complexity of the solution, we find it advantageous to 
sidestep the direct asymptotic analysis of the full generating function by 
utilizing the differential equation/scaling solution method tl~ to obtain the 
scaling behavior near (e, a) = (0, 1 ) in Sections 6 and 7. First, however, we 
examine the discrete model. 

4. F U N C T I O N A L  E Q U A T I O N S  

We follow the method of Prellberg and Brak ~1~ to derive a set of 
coupled functional equations for the generating function for column-convex 
polygons. Here, it is convenient to write this generating function in the 
variables u = x  2 and v=y2, a natural choice, as there are always even 
numbers of horizontal and vertical perimeter bonds in column-convex 
polygons. It is further necessary to introduce two additional generating 
variables 2 and Ia which count the height of the leftmost and rightmost 
columns, respectively. We will show now that G(u; 2, It) = G(u, v, z; 2, It) 
satisfies 

G(u; 2, Ia) = 211 + G~,(zu; 2, 1 ) -  G(zu; 2, 1)] zu[via + G:,(u; 1, Ia)] 

+ 2G(zu; 2, 1 ) via + 22G(zu; 2, 1 ) G(u; 1, Ia) (4.1) 

where we denote partial differentiation with a subscript, e.g., 

O 
G,,(u; 2, Ia)= ~ G(u; ,~, Ia) 

Ul a 
(4.2) 
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and drop the second and third arguments of the generating function for the 
sake of readability. 

This equation can be best understood by using a graphical representa- 
tion (see Fig. 4). The general idea is to partition the set of all polygons into 
disjoint subsets, and to give construction rules for the polygons in these 
subsets, which then are expressed as functional equations of the respective 
generating functions. 

The partition we choose is characterized by the leftmost overlap of 
height one between t.wo neighboring columns in a polygon. We now 
explain the diagrams in Fig. 4 one by one and derive their generating 
function representation. 

The first diagram represents the case with no overlap of height one. 
Then the polygon can be written as an "inflated" polygon, which can be 
obtained by increasing the size of a column-convex polygon (symbolized by 
a square) by adding one area element to each column (symbolized by a 
square with an attached black bar on top). In terms of the generating func- 

Column-Convex Polygons 

[ - - ~  = +2x  
G(u;,X,~) ;~G(zu;)~,~)v~ ,~G( zu; ,~, 1)G(u; 1,#) 

+ 

,X [G,,( zu; ,X, 1) - G( zu; ,X, 1)] zuG ~( u; 1,~) 

+ 

)~ [G~,( zu; )~, i) - G( zu; ,X, 1)] zuv# 

)~zuvp AzuG.x(u; 1,#) 

Fig. 4. Diagrammatic form of the functional equation. The clear square corresponds to the 
generating function G, the black regions are parts added to G. The arrows indicate summation 
over the height of the indicated region. 
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tion, the addition of an area element for every horizontal step means that 
u gets replaced by zu, and the increase of the number of vertical steps and 
the left and right heights of the polygon leads to a multiplication by 2vp. 
Therefore, the generating function G~ for an inflated polygon is given by 

Gl(u; 2, p) = 2G(zu; 2, #) vp (4.3) 

If there is an overlap of height one, then the part of the polygon to the 
left of this overlap is again an inflated polygon (unless, of course, the 
polygon starts with a column of height one, which we consider below). 
This inflated polygon gets concatenated to another polygon, either directly 
at their respective corners or with a joining single square between them 
(unless the leftmost overlap of height one happens to be at the rightmost 
column, which is also considered below). 

The second diagram represents the concatenation at the corners. This 
concatenation sums over all possible right heights of the inflated polygon 
( ~ =  1) and all the possible left heights of the second one (2 =  1). The 
concatenation also reduces the number of total vertical steps by two, 
leading to a factor of v-1, so that we get 

Gz(u;) t ,p)=G~(u;2,1)v-~G(u;1,  p )=2G(zu ;2 ,1 )G(u ;1 ,# )  (4.4) 

The third diagram represents the concatenation of an inflated column- 
convex polygon with a column-convex polygon by a single square. 
Naturally, there is multiplicity due to the various possible positions of the 
middle square. The square may be attached to the right polygon 
everywhere, which can be written as (0/02)G(u; 2,/~)1~=~. However, the 
left polygon gets attached everywhere except at the top and bottom positions 
(which have already been counted as a subset of configurations in Gz), 
written as 

0 1 P)~,= 
Op p2 Gl(u; 2, l 

Multiplying these terms to the middle square gives 

d 1 I.t) ~,= zu d p) G3(u;).,p)=-5~-~GL(u;)~, i v O~----G(u;2, 
2 = 1  

=2[Gu(zu;2, 1 ) -G(zu;2 ,  l)]zuG;.(u; 1, p) (4.5) 

Finally, we turn to the exceptional cases mentioned above. Here, the 
left or right polygon is missing, leading to the generating functions for the 
remaining three diagrams in Fig. 4: 
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G4(u; 2,/~) = 2[G~,(zu;2, 1 ) -  G(zu;2, 1)] zu~ 

Gs(u; 2,/.t) = 2zul.t 

G6(u ; 2, It)= 2zuG~.(u, v, z; 1, I~) 

(4.6) 

(4.7) 

(4.8) 

Summing up G=G~ +2G2+G3+G4+Gs+G6, we get Eq. (4.1). 
We can transform this functional-differential equation into a set of 

functional equations by partially differentiating (4.1) with respect to 2 and 
/~ and setting 2 =/a = 1. This leads to 

g = { l +  

g~.=g+ { 

gj,= {1+ 

g~.u = gi, + 

G u -  G} zu{v+g).} + {v+ 2g} G (4.9a) 

G~.,,-G).} zu{v+ g~.} + {v+2g} G~. (4.9b) 

G~,-G} zu{v+g~.j,} + {v+2g,,} G+vG,, (4.9c) 

{G~.~,-G~.}zu{v+g~.,,}+{v+2g,,}G~.+vG~.~, (4.9d) 

where 

g(u, v,z)= G(u;1 ,1)  

g,(u,v,z)= G~,(u;l, 1) 

g~.(u, v,z)=G~.(u; I, 1) 

g).u(u, v, z)= G ~.u(u; 1, 1 ) 
(4.10) 

and 

G(u, v,z)=g(uz, v,z) 

G~,(u, v,z)=gu(uz, v,z) 

G).(u, v, z)=g~.(uz, v, z) 

G ~.u(u, v, z)=g~.~,(uz, v, z) 
(4.11) 

By the symmetry of the configurations we must have g~, = g;. and thus there 
are actually only three independent equations in the three unknown func- 
tions g, g;., and g;.~,. Choosing the first three equations leads to a final set 
of three coupled nonlinear functional equations, 

g =  {1 + G;.-G} zu{v+g;.} + {v+ 2g} G (4.12a) 

g~. =g + {G~.,,- G~. } zu{v +g~.} + {v + 2g} G~. (4.12b) 

g;={l+G;.-G}zu{v+g;. , ,}+{v+2g;.}G+vG;.  (4.12c) 

5. P E R T U R B A T I O N  E X P A N S I O N  

Using an asymptotic expansion around z =  1, one can use (4.12) to 
derive a set of exponents at the tricritical point)~o~ First, we note that setting 
= = 1 results in a set of algebraic equations which can be solved explicitly for 
A(u, v)=g(u, v, 1), Al(u, o)=g~.(u, v, 1), and A2(u, o)=g).i,(u, v, I), 
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A = A ( v +  2 A ) + ( I  + A I - A ) u ( v +  AI) (5.1a) 

AI = A  + A t (v+  2A)+ ( A z - A l )  u(v+ A~) (5.1b) 

AI = A(v + 2Al) + (1 + Ai - A) u(v + A2) + Aiv  (5.1c) 

One can transform this system to get algebraic equations for A, A l, and 
A2. We give the result for A(u, u): 

0 =  - ( u -  1)4 u 2+ (u s _ 7 u  2 + 3 u _  1 ) ( u -  1)3 A 

+2(2u 3 -  l l u  2+ 1 0 u - 4 ) ( u -  1)2 A 2 

+ ( u -  1)(5u 3 - 3 5 u  2 + 4 7 u - 2 1 )  A3 

+ (2u 3 - 23u 2 + 38u - 18) A 4 (5.2) 

which is the perimeter generating function, Eq. (18) in ref. 1. A(u, u) has a 
square-root singularity at 

uc = 3 -  2 x//-2 (5.3) 

leading to a value of 

y~= - �89  (5.4) 

As described in ref. 10, we can now compute the crossover exponent ~b 
by using an asymptotic expansion in z = e x p ( - ~ ) .  Expanding up to first 
order in e, we write 

g(u, v, z )=  A(u, v)+ ~B(u, v) (5.5a) 

g:.(u, v, z) = A l(u, v) + ~Bl(u, v) (5.5b) 

g:.u(u, v, z )=  A2(u, v) + ~B2(u, v) (5.5c) 

so that 

G(u, v, z) = A(u, v) + ~(B(u, v) - uAu(u, v)) 

O 
with A,(u, v)=-~uA(u, v) (5.6) 

and correspondingly for G~ and G:.u. This leads to the following system of 
three equations: 

B + u A ~ = ( 1  + A i - - A ) u ( B l  + u A l , ) + ( B i - - B ) u ( v +  Al)  

+ A(2B + 2uA,) + B(v + 2A ) (5.7a) 
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BI + u A , . = ( A z - A I ) u ( B I  +uAIu )+(B2-BI )u (v+  Aj)+ B+uAu 

+ A I(2B + 2uA,,) + B~(v + 2A) (5.7b) 

B~ + u A ~ . = ( 1 4 - A ~ - A ) u ( B 2 4 - u A 2 u ) 4 - ( B ~ - B ) u ( v + A 2 )  

+ A(2Bt + 2uA lu) + B(v + 2A l) + B~ v. (5.7c) 

This  sys tem of  e q u a t i o n s  is l inear  in B, B~, and  Bz, with a d e t e r m i n a n t  

D(u, v) fulfilling (again,  we give the resul t  for  u = v on ly)  

0 = - 4 ( u  2 - 6u + 1 )2 (u + 1 )4 ( u -  1 )lo 

+ ( u +  1 9 ) ( u 2 -  6u + 1 ) ( u +  1) 2 ( u -  1 ) 6 D  2 

- 3(u 2 - 6u + 1 )(u + l )2 (u --  1 )3 D 3 

+ (2u 3 - 23u 2 + 3 8 u -  18) D 4 (5.8) 

In  the a b o v e  we have  inser ted  the express ions  for A, A l,  and  A 2- T h e n  

B can be wr i t ten  as 

)'0(U, U) "['- ) 'I(U , u) Au(u , /)) 4- ~2(u, U)Alu(U , u) 4- y3(u , v) A2u(u , o) 
B(u, v ) -  D(u, v) 

(5.9) 

with ~,~(u, o) be ing  m u l t i n o m i a l s  in u and  o. Since D(u, u) has a square  roo t  

s ingular i ty  at u c = 3 - 2  x//-2, then  B(u, u) diverges  at uc wi th  e x p o n e n t  

~,1'~= 1, p rov ided  tha t  no cance l la t ions  occur ,  which needs  to be checked  u 
explicit ly.  F o r  this, we give B(u, u) as the so lu t ion  of  an a lgebra ic  equa t ion ,  

0 = u4(u - 1 )4 (2U 9 __ 15U 8 4- 8U 7 4- 60U 6 

- -  4U 5 -- 106U 4 -- 56U 3 + 60U" -- 14U + 1 ) 

+ U2(U -- 1 )4 (U + 1 )(U 2 -- 6U + I )(2U I~ -- 21U 9 + 61U 8 -- 72U v 

4- 32U 6 4- 230U 5 -- 282U 4 -- 480U 3 4- 342U 2 -- 73U + 5) B 

+ ( u - -  1)2 ( u +  1)2 (u 2 _ 6 u +  1)2 (4u12__ 52ul l  + 157ulO+ 162u 9 

- 973u 8 -- 60u 7 4- 2687u 6 -- 2902u 5 + 1629u 4 

- -  988u 3 + 364u 2 -- 64u + 4) B 2 

- -  4u(u - 1 )2 (u + 1 )3 (u 2 __ 6u + 1 )3 (24u 7 __ 190u 6 4- 261u 5 + 699u 4 

- -  1615u 3 + 8 8 5 u  2 -  1 6 8 u + 2 4 )  B 3 

- 4u(u + 1) 4 ( u 2 -  6u + 1) 4 (2u - 23u2 + 3 8 u -  18) 2 B 4 (5.10) 
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One can now check that ~,I, ~1 is indeed equal to 1, and we can read off the 
crossover exponent ~b via its relation to the gap exponent A = y~ l~-y , .  We 
have 

1 2 1 
~b = - ; =  3 , a  and thus ) " =  ~Y" = - 3  (5.11) 

We emphasize that this derivation uses the assumed existence of an 
asymptotic expansion at the critical line z = 1 and interprets the exponents 
within an assumed scaling ansatz. 

6. CONTINUUM LIMIT 

The semicontinuous column-convex model solved in Section 3 can be 
obtained by taking the cont inuum limit of the lattice model. To see how 
this occurs, we can write the lattice generating function in the form 

g(u, v, z) 

n ~ l  k l ~ l  k n = l  m l = l - k  2 m n _ l = l - k  n 

where 

e x p [ -  ~, ,(k, ,  m, ..... k,,)] 

(6.1) 

~,,= ~ {z~(ki-j,m,-l,ki)+eki}, 
i = 1  

ko = 0  (6.2) 

I 

i 2 l 

'I 211 
Fig. 5. Length labeling of the lattice column-convex model. 
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and ~ ( k ; _  1, m;_ 1, k;) is the length of the perimeter  between columns i and 
i +  1. The labeling of the lengths is shown in Fig. 5. Note  that the number  
of summat ion  signs associated with a configuration with n columns is 
2 n - 1 .  The generating function for the semicontinuous column-convex 
model is 

f~c(w/-u, t ,  e ) =  u" dr I . . .  dr,, dsl . . .  ds,,_ l 
i t  = I - r 2  - -  v n  

• exp[  - ~, ,(r  I , si ..... r,,)] (6.3) 

We can now obtain this generating function from the lattice model by 
explicitly inserting the lattice spacing a into the lattice generating function 
and taking the cont inuum limit a ~ 0. This gives 

f # c ( x / ~ , t , e ) = ] i m o ~ g ( a 2 u ,  v" , z~  (6.4) 

where we use l ima_o Z , ,  a f ( a m )  = S d r f ( r ) ,  r = am, on each of the summa-  
tions appear ing in (6.1). Equat ion (6.4) shows that  

1 
- g ( a2u ,  v ~, z ~ = O(1 ) (6.5) 
a 

as a ~ 0. Extending (6.1) to the generating function containing the left and 
right column height generating variables 2 and it, we can show that 

3 
~-~ g(aZu, v ~, z"; 2,/~) = O(1) (6.6) 

0 2 
- -  ag(a2u, v a, z"; 2, #) = O( 1 ) (6.7) 
O2 O/~ 

as a --* 0. 
We now use the set of functional equations for the column-convex 

lattice model  to obtain a set of coupled nonlinear differential equations for 
the semicontinuous model. By multiplying or dividing by a, we can write 
the functional equations (4.9) as 

g =  I + G , ,  a z " a u { v ~  v ~  -- (6.8a) 
a a 

g ~ ' = a g + { G ~ " - G ~ ' } z " a 2 u { v ~ + g ~ } + { v ~  (6.8b) 
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G z a - u { v "  g~ l + G ~ ' - a a  + g ; ' ~ } + { v ~ + 2 g ~ } a G + v ~ G " a  (6.8c) 

ag~.,, = ag,, + a { G;., - G~. } z~aZu { v a + g;.u } + a { v" + 2g u } G;. + v~aG;.u 

(6.8d) 

where we have replaced v by v", z by z ", and u by a2u (but not shown it 
in the arguments of the generating functions, for clarity). Let z = exp( -a )  
and v = exp(-r/);  then Taylor expanding for small a the explicit factors of 
z ~ and v a in (6.8) and using 

G(aZu, v ~, z ~) =g(z~a2u, v", z ~ =g(aZu,  v ~ z ~) --a3ueg' + O(a 4) 

(and similarly for G~., G,, and G~.,) gives 

g, g2 
~u--=  u(1 +gu)(1 + g ~ ) + 2 - d i - - q g + o ( a )  (6.9a) 

12 O 

~ug~. = g  + uag;.,,(1 + g).) + 2g~. g - qg). + O(a)  a a 
(6.9b) 

' = g + uag~.,,( 1 + g,,) + 2g~, g - qg~, + O(a)  gugu a 

~uag ~.,, = g ,  + g;  - rlag ~.~, + ua2 g ~.~, + 2g;. gu + O ( a ) 

(6.9c) 

(6.9d) 

where the prime denotes differentiation with respect to the first (i.e., u) 
argument of the function. Note the explicit symmetry of the equations for 
gu and g;. showing g;. = g, .  Thus we need only three of the equations. Now, 
take a--* 0; using (6.5)-(6.7) gives 

Pt--d7 -=dF~ tF~ + 2FZo + 3Fo + l 

dF~ 
pt  ---~- = tFl Fz + Fl + 2FoFl  - Fo 

dF2 
pt --~- = tF~ - F2 - 2F, + 2F~ 

(6.10a) 

(6.10b) 

(6.10c) 

where 

r/ 
U 

r /2 '  

1 
F o ( t ) = -  ~(rl2t, q, e ) -  1, 

q 
FI =~; .+  1, F2 = r/o~ u 

(6.11) 
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and 

~(u, r/, e )=  lim t-g(a2u, v% z~), ~. = lim g;., 
. ~ o a  . ~ o  

1125 

~;.~, = lira ag~. u 
a ~ O  

(6.12) 

As a check on these equations, we can solve for the perimeter-only gener- 
ating function. This corresponds to z =  1 or e---0. Thus, putting p = 0  
in (6.10) and eliminating Fl and F_, gives the following quartic algebraic 
equation for Foo = Fo(p = 0): 

(18 + t) r~o + 51F 3 + 53F~o + 24F0o + 4 = 0 (6.13) 

We do not give the expression for the physical branch from (6.13), as it 
rather long; however, Taylor expanding gives 

Foo= -1  +t+4t2+33t3+334t4+3766ts+O(t 6) (6.14) 

As a check, if the alternative and apparently quite different expression 
(3.31) is also Taylor expanded, exactly the same result is obtained. A study 
of the physical branch of (6.13) shows that 

~ ~  1 ( 5 _ 2 x / ~ ) _ 2 - "  ( 1  ),/2 1 
1-- -7  ]-~-i(12+19x/~) ] ~ - t  as t~ l - -  ~ (6.15) 

and thus we have that 

t c = ~ ,  ?u= - ~  (6.16) 

Note that t,.= 1/16 is equivalent to 2 x =  r (or 2 x=  - l o g y ) ,  as r /=2z and 
U = X  2. 

7. SCAL ING F U N C T I O N  

We now proceed to compute the exact scaling function for the semi- 
continuous column-convex model. The three nonlinear equations (6.10) 
can be reduced to a single nonlinear equation for F0 by eliminating FI 
and F 2. This produces a 381-term nonlinear equation which is quadratic in 
the third derivative. The equation for F o begins and ends as follows: 

4tlOp, f dFo'~2 f d3Fo'~ 2 ~--~-] ~---~-j  + ... (379 terms).-.  + 4 = 0 (7.1) 

Putting p = 0  into (7.1) does give (6.13) as required. The form of the 
solution obtained in Section3 suggests (7.1) might be an instance of a 
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solve (7.1)explicitly, but 
first change variables to 
and (6.11) we let 

generalized Ricatti equation; t25~ however, this would require it to be linear 
in the third derivative. We were unable to transform the equation into the 
required form. However, should this be possible, the equation could then 
be solved explicitly, as it can be linearized. 

If only the scaling behavior is required, then it is not necessary to 
only asymptotically as p ---, 0. Following ref. 10, we 
shift the singular point to the origin. From (6.15) 

F 0  = F o  __ 2 ~ (6 + x//-2), t = f +  l~ (7.2) 

which gives, in expanded form, a 2548-term nonlinear differential equation. 
We now take the important step of looking for a generalized homo- 

geneous solution. To this end we change independent and dependent 
variables to 

Fo=pqH, i=pPw (7.3) 

which produces the following equation for H(w): 

~2OpS+lOp+4q(dn~2(d3n~ 2 
\ d w /  \ d w 3 /  + ' ' ' ( 2 5 4 6 t e r m s ) ' ' ' + p p w = O  (7.4) 

Note that all the terms of the equation are multiplied by some power of p 
which is a linear combination of p and q, plus some constant. This equa- 
tion does not have a solution independent of p as desired; however, it is 
dominated by several terms which give rise to such a solution. To see this, 
we use the principle of dominant balance. 126~ This tells us that the domi- 
nant asymptotic form of H, Ho, is obtained by those terms which dominate 
the differential equation as p ~ 0. 

Let the powers of p of each term be d~, i =  1 ..... 2548. Clearly the set 
of terms with the equally smallest d~ dominates all the others: if there are 
m equally smallest terms, then 

di ,  = d i  2 . . . . .  dim < di.,. ~ <~ dim +2 ~ "'" 

Thus, the problem reduces to finding the values ofp  and q which give a non- 
empty set Z = {d~,, di2 ..... dim }. As each d~ is of the form dj= c~ p + ci,.q + c~, 
where the c:s are known constants, the problem becomes that of finding the 
sets of consistent linear simultaneous equations for which X is nonempty. In 
general there will be many solutions to this problem; we can uniquely pick 
one of these solutions by requiring that the solution of the resulting differen- 
tial equation asymptotically match the known p = 0 solution [Eq. (6.15)]. 
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We find that 

(7.5) 

Remarkably, there are only three elements in the set X and hence all the 
2548 terms are dominated by only three. Thus the solution of (7.4) is 
asymptotic to the solution of a three-term differential equation 

where 

dHo 
= cw + bH o (7.6) 

2 7 
c=-i-~_(19+6x/~)  and b = 4 ( 1 9 - 6 x / ~  ) (7.7) 

This equation is a Ricatti equation and thus can be linearized by the 
transformation 

1 K'(w) 
Ho(w) = (7.8) 

b K(w) 

so long as K(w) satisfies the linear equation 

K" + 83wK = 0 (7.9) 

A further change of variable reduces this to Airy's equation. Thus, solving 
it gives 

2 , A i ' ( - 8 w )  
Ho(w) = - - F ~  2 (19 + 6 x/~j - ~  ---~w) (7.10) 

The other solution, B i ( -  8w), of Airy's equation is omitted, as the arbitrary 
constant arising from the integration must vanish for this solution to 
asymptotically match the p = 0 solution. Returning to the original variables 
gives the asymptotic form of the generating function: 

~(x, r, e) 2 4 
r 17 ( 5 -  2 ~/~) + - ~ (  19 + 6 w/22) 

• { e }'/3 Ai'({e/2r}-2/3 {1/2-2x2/z2}) 
Ai({e/2z } -2/3 {I/2-2x2/~2}) (7.11) 

This result asymptotically matches (6.15) for p---, 0. This is easily seen by 
using the result Ai'(s)/Ai(s),~ - x / ~  as s ~ oo. This shows that the above 
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choice of p and q gives the correct set of dominant balance terms and 
the initial conditions in solving Airy's equation were correctly chosen. 
Comparing this with the tricritical scaling form (1.5) gives 

7,= -�89 ~b=~ (7.12) 
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